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ABSTRACT

We derive explicit formula s for the second moments of the

absorption time matrices i n  the Markov Renewa l Branching process.

These formulas may easily be computationa lly impl emented and are 
*

useful in the iterative computation of the sem i-Mark ov matrices ,

which give the distributions of the duration and of the number

of customers served in a busy period of a great variety of

complex queue ing models.
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I. In t roduct ion

This note is a sequel to [1], w here we di scussed th e momen ts

of sem j—Markov matrices associated with the time till extinction

in a Markov renewal branching process. We refer to .[l] for the

mot i va t i on  and a general  desc r i p t i on  of the problem under

d i scuss i on .  In queueing theory , the se mi -Markov  mat r i ces  of

interest are re la ted  to the number of customers  served and to

the time duration of the busy period. See e.g. [2].

Recalling only the most essential definitions from [1], we

consider a sequence iA~ (.)} of substochastic semi-Markov matrices ,

with Lap lace -St ieltjes transforms {A*(s)}, such that the sum

(1) A(x ) = ~ A~ (x), x~ O ,
n=O

is an irreducible , regular stochastic semi -Markov matrix. The

invariant probability vector of A=A( +co ) is denoted by w and the

vec tor ~ is defined by

0~

(2) ~ = ~~ nA~,e ,n=l

where A~=A~ (+~ ), for n>O , and e=(l ,l ,...,l )’ .

Throughout this paper , we shall assume that the irreducibility

assum pti ons , stated in [1], hold and also that

(3 )  p = ~~~~~~

There then exists a unique sequence of substochast ic semi-

Mar kov matrices (G ( .) } ,  such tha t the transform ma tr i x

- - - 
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(4) G*(z ,s) = z~ ;~ e~~~ d~~ (x),0

de fi ned for O~z~ l , s?O , satisfies the nonlinear matrix equation

n
(5)  G * (z ,s )  = Z E  A*(s)[G* (z,s)J

n 0  ~

Moreover the matrix G=G*(l ,O)= E G (+o~ ) ,  is a positive
n=1 ~

stochastic matrix, which satisfies

(6) G = E ~~~~n=O

The invar ian t  p robab i l i t y  vec tor  of G is denoted by ~ a n d

the matrix G is defined by G 1~ =g~ , for l~~i ,j~m. The matrix I-G+~
is known to be nonsingu lar. The matrices M and N are defined by

(7) M = f~ xd~ ~ (x.)=-[~-- G*(l ,s)],
0 n=l n S s=0

N = E n~ (+
~ )=[~— G*(z,O)],

n=l ~ Z z l

an d ti Me , v=Ne .

For fu ture reference , we define

(8) B(l) = z nA ,
n l  ~

B(2) = E n (n_ l)A ~~ ~2=B(2)e ,n 2

C (1) f
0
x dA (x )=_ [~j. A*(s)], ~*=C(l)e ,

0 s 0
2

C(2)’f~x 2dA (x)= (~.~7 A*(s)],0 ds s = O  2 —

D = E nf~xdA (x)= - E nA*I (O+), tS=De ,
n= 1 O n=l ~

___________________ _ _ _  _ _ _  •
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E( l ) = - ~n=0

E(2) = z A* ” (o+ )s~.
n=0

- 
- These  m a t r i c e s  w i l l  be a s s u m e d  to be known and finite. We note

that if S is known a c c u r a t e l y ,  then E ( l )  and E (2 )  can in pr inc ip le

be com pu ted , with E(l)e=~* and E(2)e=8~ , serving as accuracy checks.

By routine differentiations in Equation (5) and using results

in El], the matrices M and N are the unique solutions , respectively

to the matrix equations

n-i
(9) M = E(l)+z A~ ~ G

uMG
n_ l_ v

,
n=l ~=O

n— i
N = G+z A ~ G’~NG~~

1
~ ”,

n=i ~ v=0 - ‘

and the vectors p and v are given explicitly by

(10) u =  (I_ G+ ~ )[I_A+~ _A ($ )~ ]~~ B* ,

v = ~~~~~~~~~~~~~~~~~~~~~~~

w here

Powerful accuracy checks on numerical computations are

provid ed by the formulas

(11) ~u = ( i~~pY h 1T8* , = (1-p)~~.

The pur ’ ~~ of th is  paper is as fo l l ows . I~- ~uss 1ng the

steady-state probability di stributions of a variety of queueln g

mod els , it turns out that only the vectors i~ 
p and v and the

matrix G are of essent ial computational Importance. Even for

ma trices A~ of fairly high order , the amount of computation is
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smal l to moderate.

In  con t ras t , the numerical computation of the semi -Markov

matrix ~(x)= E ~~(x)~ for x~ 0, and of the sequence {G ~~ (+co)} j~
a major task. The most promising algorithms involve iterations

of the nonlinear operator , corres ponding to the inver ted form of

Equation (5).

Such algorithms require however that a priori cut-off points

on the tails of the probability distributions be computed . With

information on the second moments of ~
( .)  and 

~~~~~~ 
available ,

we can limit computation to terms up to three or four standard

deviations beyond the mean. We therefore proceed to a discussion

of the matrices M2 an d N 2, defined by

2
(1 2) M2 

= f °’x 2 d~~( x )  = 
~~
—2- G*(l ,s)],

0 ds s=0
2

N2 
= Z n(n -l)G (+~ ) 

= 
~~
—2- G *(z,0)],

n=2 dz z=l

and the vectors ~i 2 M2e , and ‘v 2=N 2e.

Although the derivation of explicit formulas for the latter

is primarily a matter of cal culation , the intermediate steps are

sufficiently involved that it appears worthwhile to have the

resulting expressions availa ble in the literature.

II. The Matrices M 2 and  N 2.

By routine differentiations in Formul a (5), we obta i n the

equat ions

—

~

-.-- ~~~~~~~~~~~~~~~~~ .i~ 
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(13) M2- E A E G’~M2G~~~~~n=1 n ,~_ 0

n-l
E(2)-2 z A* ’(O+) z G’

~
’MG~~~

’”
n=1 ~ v=O

0~ n- 2 v
+2 ~ A~ z z G t’MG

v_ r
MG

n_ 2_ v
,

n=2 v=0 r=0

and

~ n-i
(14) N2- E A ,~ E Gu N 2G

n_ l_ v 
=

n l  v 0

n-2 v
2N-2G+2 Z A ~ E &‘NG v_ r

NG
n_ 2_v

.
n=2 ~~~O r=0

For practical purposes , the explicit expressions , given below ,

for p
2 and will be sufficient. The numerical solution of

Equations (13) and (14) is feasible , whenever the ri ght -han d sides

can be computed accurately. The following results convey useful

information on such computation.

Lemma 1

For any square matrix X , we have

n-2 v H(15) u r n  ,~-2 ~ 5r~5
v_ r

~5
n_ 2_ v 

= = ~~~~n ÷°° v= O r 0

— Proo f • 1

n — i
Writing U~ = E GV XG fl 1 V and noting that by interchanging

v O

th e order of the summa ti ons , we obtain

n-2 v n-2
(16) 1 = ~ 5

rx~
v_ r

~5
n_ 2_ v 

~ G
V XIJ

~ v 0 r=O \)0 n- v-

so that •

(17) n 2T~ 
= n

~~~~~~~:v 

G V X ( n ~ v)~~ U 1
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In [1], Thm 4, we proved that n ’U~÷(~ Xe)G. Using this

result and repeating verbati m the same proof for the expr ession

in (17), the stated result follows.

Lemma 1 shows that the truncation error at the ind ex n=K
n-2 v

in the infinite sum E A~~ E ~ G
rMG

v_ r
MG

n_ 2_ v
, is approximately

n=2 v=U r=0
equal to

(18) ( u _ ~) 2 (i~*) 2 n 2A
n=K+ l

Similar error estim ates apply to the other infin ite series.

T he ma tr i ces an d T n can be computed recursiv ely for use in

the computation of the right hand sides. We have the recurrence

relations:

(19) U 1 X , U~ =XG ”~~+GU~~1. for n�2 ,

Tn =XU 2+GT n l  , for n~3.

III. The Vectors 
~-2 

and

Theorem 1

The vectors p
2 

and are given by

(20) 
~-2 

= 2[(~ j~)I-M](I-G+~ )~~~ +

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and

_ _ _  - -
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( 2 1 )  
~2 - 2[ - I-Nj (1-G÷~~~~~~ 2 (1- p~~ ÷

+

2 ( 1 - o ) ~~ [8( 1  ) - p I ] ( I - G + ~~Y
1 v ) .

Proo f

The proofs of both formulas a~re similar , so we shall only

give the main computational steps of the proof of (20). Several

non -obvious steps are involved.

Multiplying the left hand side of (13) on the right by e,

we ob ta in :

n -i
(22) E2- : A ~ G~~2 

= p
2- [A-G÷ A ( ](I-G+~~r~~ 2n= l ~ v 0

= [I-A+~ -~~~~~~~(r-G +~~)~~~~2 .

Multiplying the terms in the right hand side by e , the first term

clearly yields 
~~~~~~ 

The second term yields

n- i
(23) 2 ~ A~~(0+) ~ =

n 1

2 [ A * ’ ( O + ) ~ ~~A *1 (O+)G
n + E flA *t (O÷ )G ](I~ G+G )~~

l
U

n=O n=1 ~ —

=2[E(1 )-C(l )] (I-G+G) -2(~ jj)~~.

• The third term is more involved. We obtain

n-2
(24) 2 E A E E G rMG

v_ r 
=• n=2 ~ v= O r~O 

—

n-2 v
2 E A~ ~ E G

r M ( G V _ r  
5v+l-r +~ )(1 G+~~)

1 p =

n=2 v=O r 0
n- l n-I

2 E A n E GVM( I_ G+~ Y~~ _2 E A~ E GVMG f l _ V (I_G+ ~ )~~j~
n= 1 v=0 n=1 v=O

n-2 V
+2 z A  z E G rMGP .

n=2 ~v=O r=O 
—

- . —  • -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -•=~
——•— ..-
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The f i r s t  two of the l a t t e r  terms s i m p li f y  to

(25) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-2 [M-E (1 ))(1-S+~Y~~ 
= 2E(l

The last term in (24) yields

n-2 V
(26) 2(~ u) E A~~ ~ ~

n=2 v 0  r=O

n-2
2(
~~L) E A~ E

n=2 \)0

but

n-2 n-i
(27) E A E [I-G ~~~+(V +1)~ ] = E nA~ - E A~ E

n=2 ~ v =O n=2 n=2 v 0

+~
- E n ( n - i )A ~ G =

so that the expression in (26) becomes

(28) ( )28 + 2(9 )[B(i )-I] (I-G+~ Y
1 p

After collecting terms and m ultiplying by the invers e of the

coefficient matrix in Formula (22), we obtain the explici t

formula (20).
-

• 
Coro l lar y 1

In the M/SM/l queue with arrival rate A and service time semi-

Markov ma trix A ( . ) ,  we have the simplif ied formulas
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(29) p =X~~~*, B(l)= x C(l ), B( 2)=2 2C (2),

— l  —
9p~ A p ( l — p )  ,

p
2=2 [A~~ p(l- p )~~ I-M]( I-G+~~)~~ p +

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +

2(1 -p )~~~~ [CC 1 ) -x ~~ p1 ] (I -G+~ ) ~
‘ p },

v 2 2 [(l-~ )~~ I-N](~~-G+G) +2(1-p)~~ p~ +

+

2(1 -p )~~~~ [xc (1 )-pI] ( I-G+GY
1 v} .

Remark

In the sca l ar case (M/G/ 1), where A= G =~ =l x~~ =o , v~~(i-p )~~

~~ X
1
p(l- p)

1 , the latter two formulas reduce to the classical

formu l a s .

V 2 = ( i - p ) 3 A 2
~~~+2 p ( l - r ) 2 .

IV. N u m e r i c a l  C o m p u t a t i o n

Assuming the required moment matrices , other than E ( l )  and

• E(2), defined in (8) are known , the first step is the num e~- ica l

computation of S. As discussed in [1], we found that successive

substitutions in the equation

(30) 5 = (I-A 1 )~~ ~ A G~ .
V

v~~l

s t a r t i n g  w i t h  G=O , con verge  r a p i d ly  e x c e p t  for ~ very close to one.

The evaluation of G and E(l ) is routine. h. Is not necessary

to compute the inverse of (I-G+G ), since only the vectors

_ _
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(I-G+ ~ )
_
~~ and (I- G+~ )~~~ are needed and by Formula ( 10 ) ,  it i s

clear that these can be evaluated without inverting the matrix

I-G+~ .

The main computational effort goes into the evaluation of

the matrices M and N. As shown in [1], the equations (9) are each
2 .  2equivalent to systems of m linear equations in m unknowns.

Excep t  for very small values of m , it is i m p r a c t i c a l ho w e v e r  to

compute the required coefficient matrix.

We have successfully compu ted matrices M and N for m as large

as thirty, without expending excessive computer times by straight-

forward successive substitutions and by using the first of the

recurrence relations in (19) to compute the required matrices U~ .

The speed of convergence can be substantially improved by

writing the equations (9) in the form

-l n-2
(31) x=[ I- z A~G

n_ l
] [Y+ E A n ~

n 1  n 2  v=O

with X=M , Y=E( 1) and X=N , Y 5 , respectively.
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